Diarrhetic Shellfish Toxin and Lipophilic Toxin Profiles in Japanese Bivalves and an Effective Monitoring System by Using a Rapid Assay Kit

Toshiyuki Suzuki,^a Reiji Sekiguchi,^b Taketo Jin,^c Yuri Shirota,^d Motohisa Honma,^d Yutaka Okumura,^a Takashi Kamiyama ^a

- ^a Tohoku National Fisheries Research Institute
- ^b Japan Food Research Laboratories
- ^c Aomori Prefectural Institute of Public Health and Environment
- ^d Japan Frozen Foods Inspection Corporation

Development of rapid screening methods for lipophilic toxins and paralytic shellfish toxins in Japan (2003-2006)

- Period: 2003-2006
- Funded by the Japanese government
- Budget: 450,000 US \$ per year

Development of rapid screening methods for lipophilic toxins and paralytic shellfish toxins in Japan (2003-2006)

- OA PP2A assay kit (Japan Food Research Lab.)
- YTX ELISA kit (Japan Food Research Lab.)
- PTX ELISA kit (Japan Food Research Lab.)
- PSP ELISA kit (Osaka Pref. Inst. for Public Health)
- Instrumental methods (HPLC, <u>LC-MS)</u> for confirmatory tests of screening methods (Tohoku Univ., Tohoku Natl. Fish. Res. Inst.)
- Background data
 Toxin profiles of toxic plankton and bivalves
 Screening assay kit vs HPLC(LC-MS), etc
 (Tohoku Univ., Tohoku Natl. Fish. Res. Inst.)

Lipophilic toxins found in Japanese bivalves

Production areas where harvesting was ceased due to contamination of shellfish with lipophilic toxins in 2003 and 2004

LC-MS analysis of lipophilic toxins in Japan

Hepatopancreas

← 90% MeOH
(9 times volume)

Homogenize

↓

Centrifugation

LC/MS (5µL)

LC-MS analysis of lipophilic toxins in HP of scallops

Recovery (%) of toxins spiked into 90 % MeOH extracts of scallop hepatopancreas*1

PTX1	92 ± 12 *2
YTX	97 ± 4
PTX6	106 ± 7
OA	90 ± 8
PTX2	93 ± 7
DTX1	94 ± 7
DTX3	109 ± 11

^{*1} Each toxin was spiked to the extract at a concentration of 0.5 µg/g.

^{*2} Average ± standard deviation (n=5)

Toxin profiles of scallops (*P. yessoensis*) collected in 2003

Dominant toxins in bivalves in Japan

Dominant toxins in bivalves in Japan

	<i>Dinophysis</i> spp.	Protoceratium reticulatum	
	DTX1 PTX2	YTX	
Scallops P.yessoensis	PTX6	YTX 450HYTX	
Mussels M.galloprovincialis	DTX1	YTX 450HYTX	
Mussels M.coruscus	DTX1	YTX 450HYTX	

Comparison of total mouse toxicities obtained by LC-MS and MBA

Average toxin profiles obtained from the 67 samples that gave the discrepancies between the toxicities (MU/g whole meat) quantified by MBA (<0.05) and LC-MS (>0.05)

Principle of PP2A inhibition assay

pNPP: p-Nitrophenyl Phosphate pNP: p-Nitrophenol

from Neptunea spp.

PP2A inhibition assay kit

LC-MS vs protein phosphatase 2A inhibition assay*1 for okadaic acid analogues

Comparison of mouse toxicities obtained by MBA and total OA contents quantified by LC-MS for scallops (*P. yessoensis*)

Percentage (%) of the numbers of MBA reduced when the the screening level (0.016 mg/kg whole tissues) is applied to the initial screening test in MBA

	Sample Numbers	MBA > 0.05 MU/g	OAs > 0.16 mg/kg	OAs > 0.016 mg/kg	%
Scallops	676	53	9	221	67
Blue Mussels	136	20	4	50	63
Mussels	36	13	12	32	11

Conclusions

- PTX6 and DTX1 are the most dominant toxins in scallops and mussels respectively, whereas YTX is a dominant toxin in both scallops and mussels.
- Comparison of the quantitative results obtained for more than 350 bivalve samples between LC-MS and mouse bioassay (MBA) showed that many samples assayed as being below the quarantine level (0.05 MU/g whole tissues) by MBA were quantified as exceeding the quarantine level by LC-MS
- Almost all of the samples quantified as exceeding the quarantine level (0.05 MU/g whole tissues) by MBA contained a level exceeding 0.016 mg/kg as the amounts of OA, DTX1 and DTX3 in whole tissues of bivalves
- More than 60 % of the numbers of MBA were reduced when this level was applied to the initial screening test in MBA

Acknowledgements

Thanks to people who provided bivalve samples for our research project

The research was funded through a research project of Ministry of Agriculture, Forestry and Fisheries of Japan: Research Project for Utilizing Advanced Technologies in Agriculture, Forestry, and Fisheries (No. 1504)